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Fine structure of distributions and central limit theorem in diffusive billiards
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We investigate deterministic diffusion in periodic billiard models, in terms of the convergence of rescaled
distributions to the limiting normal distribution required by the central limit theorem; this is stronger than the
usual requirement that the mean-square displacement grow asymptotically linearly in time. The main model
studied is a chaotic Lorentz gas where the central limit theorem has been rigorously proved. We study
one-dimensional position and displacement densities describing the time evolution of statistical ensembles in a
channel geometry, using a more refined method than histograms. We find a pronounced oscillatory fine struc-
ture, and show that this has its origin in the geometry of the billiard domain. This fine structure prevents the
rescaled densities from converging pointwise to Gaussian densities; however, demodulating them by the fine
structure gives new densities which seem to converge uniformly. We give an analytical estimate of the rate of
convergence of the original distributions to the limiting normal distribution, based on the analysis of the fine
structure, which agrees well with simulation results. We show that using a Maxw@Beunssiajp distribution
of velocities in place of unit speed velocities does not affect the growth of the mean-square displacement, but
changes the limiting shape of the distributions to a non-Gaussian one. Using the same methods, we give
numerical evidence that a nonchaotic polygonal channel model also obeys the central limit theorem, but with
a slower convergence rate.
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[. INTRODUCTION A definition often used in the physical literature is that a
o ) ) . system is diffusive if the mean-square displacement grows
Diffusion, the process by which concentration gradientsproportionally to timet, asymptotically as— . However,
are smoothed out, is one of the most fundamental mechahere are stronger properties which are also characteristic of
nisms in physical systems out of equilibrium. Understandingdiffusion, which a given system may or may not posséss:
the microscopic processes which lead to diffusion on a maca central limit theoremmay be satisfied, i.e., rescaled distri-
roscopic scale is one of the goals of statistical mechddics butions converge to a normal distribution tas «; and (ii)
Since Einstein’s seminal work on Brownian motid], dif-  the rescaled dynamics may “look like” Brownian motion.
fusion has been modeled by random processes. However, we Two-dimensional (2D) periodic Lorentz gases were
expect the microscopic dynamics to be describeddeter-  proved in[6,7] to be diffusive in these stronger senses if they
ministic equations of motion. satisfy a geometricdlinite horizoncondition(Sec. Il A). We
Recently, it has been realized that many simple determinuse a square Iattiqg with an additional scatterer in each ce[l to
istic dynamical systems are diffusive in some sense; we cafiatisfy this condition, a geometry previously studied in
this deterministic diffusionSuch systems can be regarded ag 9,10 This model is of interest since, unlike in the com-
toy models to understand transport processes in more reali§lonly studied triangular lattice cageee, e.g.[4,11,13), we
tic systems1]. Examples include classes of uniformly hy- ¢&n vary independently two physically relevant quantities:
perbolic one-dimensionallD) maps(see, e.g.[3] and ref- the available volume in a unit cell, and the size of its exits;
erences therejnand multibaker model84]. Often rigorous this is possible due to the two-dimensional parameter space
results are not available, but numerical results and analyticzgﬂ'?”lq'

arguments indicate that diffusion occurs, for example in The main focus of this paper is to investigate the fine
o ’ structure occurring in the position and displacement distribu-
Hamiltonian systems such as the standard p3dp 9 P b

- . . . . . tions at finite timet, and the relation with the convergence to
Billiard models, where noninteracting point particles in

) . o _ > "' a limiting normal distribution as— o proved in[6,7]. Those
free motion undergo elast|(; collisions vy|th an array of fixed apers show in what sense we can smooth away the fine
scatterers, have been par'uculfarly sf[ud|ed, since they aré &fructure to obtain convergence. However, from a physical
lated tq hard-sphere fluids, while being amenable to MgOroUs,int of view it is important to understand how this conver-
analy3|s[4,6,7]. They can al_so b_e regarded as the simples ence occurs; our analysis provides this.
physical systems in which diffusion, understood as the large-

| p h hth n This analysis makes explicit the obstruction that prevents
scale transport of mass through the system, can degu ., a stronger form of convergence, showing how density func-
this paper, we study deterministic diffusion in two 2D bil-

) - tions fail to converge pointwise to Gaussian densities; it also
“".’".d 'mod'els: a periodic Lorentz gas, where the scatterers a8lows us to conjecture a more refined result which takes the
disjoint disks, and a polygonal billiard channel. fine structure into account.

Furthermore, this line of argument suggests how conver-
gence may occur in other models where few rigorous results
*Electronic address: dsanders@maths.warwick.ac.uk are available. As an example, we analyze a recently intro-
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duced polygonal billiard channel model, showing that the
same techniques are still applicable. OOQOOOOOO
N

a
Qa0 (9t
Plan of paper O C\ 7™ [> O @ p .
In Sec. I, we present the periodic Lorentz gas model for (@) <o><o> (@)
which we obtain most of our results. Section Ill discusses the O C/ O \ K

cal systems. In Sec. IV, we study numerically the fine struc-
ture of distributions in the Lorentz gas, finding good agree- @
ment with an analytical calculation in terms of the geometry
of thg billiard domain, and showing that Wh?.n this fine Struc'square lattices of disks shown in different shades of gray; dashed
ture 'S, femo‘_’ed' the de_mOdUIated QenSItlgs are close es indicate several unit cells and an elastic collision is shd@kn.
.Ga.USSIan. This we apply in Sec. V to investigate the_c?’_‘tf%& single unit cell, defining the geometrical parameters. The billiard
limit theorem and the rate of convergence to the limitingomain is the are® exterior to the disks.
normal distribution, obtaining a simple estimate of this rate
which agrees well with numerical results. In Sec. VI, we
study the effect of imposing a Maxwellid®aussianhveloc-
ity distribution in place of a unit speed distribution, showing  Statistical properties of deterministic dynamical systems
that this leads to non-Gaussian limiting distributions. Sectiorfrise from an ensemble of initial conditiofg, vo) modeling
VIl extends these ideas to a polygonal billiard channelthe imprecision of physical measurements. We always take a
where few rigorous results are available. We finish with con-uniform distribution with respect thiouville measuren one
clusions in Sec. VIII. unit cell: the positionsxy are uniform with respect to Le-
besgue measure in the billiard dom#& and the velocities

Vg are uniform in the unit circlé&, i.e., with angles between
Il. TWO-DIMENSIONAL PERIODIC LORENTZ GAS 0 and 2r, and unit speeds.

We consider periodic billiard models, where the dynamics V€& €Volve(xo, Vo) for a timet under the billiard flowb!
can be studied on the torus. The regi@nexterior to the 1N Phase space (1), v(t)). Note that Liouville measure on
scatterers is called tHgilliard domair; we denote its area by the torus is invariant under this ﬂo[’i‘)l5](-i)”:l numerical ex-
|Q|. Since the particles are noninteracting, it is usual to set alPeriments, we take a large samtig’ vy, of size N of
velocities to 1 by a geometrical rescaling, although in Secinitial conditions chosen uniformly with respect to Liouville
VI we discuss the effect of a Gaussian velocity distribution.measure using a random number generator. These evolve af-
We focus on goeriodic Lorentz gaswhere the scatterers ter timet to (xV(t),v0(t)YL;; the distribution of this en-
are nonoverlapping disks. Their strictly convex boundariessemble then gives an approximation to thai(a(t), v(t)).
make this adispersingbilliard [6], and hence a chaotic sys-  We denote averages over the initial conditions, or equiva-
tem, in the sense that it has a positive Lyapunov exponeriently expectations with respect to the distributior(xyf, vo),
[4,15] and positive Kolmogorov-Sinai entrogy]. by (-). Approximations of such averages can be evaluated

using a simple Monte Carlo meth¢d8] as

definition of diffusion in the context of deterministic dynami- 00050 @)
) (b)

FIG. 1. (a) Part of the infinite system, constructed from two

B. Statistical properties

A. Periodic Lorentz gas model

N
1 o

The model we study, previously considered9nl0], con- (fxo,v0)) = ,\II'ELNZ fxg'.v6).- (2.
sists of two square lattices of disks; they have the same lat- =t
tice spacing, and radiia andb, respectively, and are posi- The infinite sample size limit, although unobtainable in prac-
tioned such that there isladisk at the center of each unit tice, reflects the expectation that largémwill give a better
cell of thea lattice; see Fig. 1. In analytical calculations we approximation. Averages at tintecan be evaluated by using
take the length scale as 1, as in[9,10], whereas in numeri- a functionf involving ®.
cal simulations we fixa=1 and scale andb appropriately,
as in[12]. C. Channel geometry

Finite horizon condition Periodic Lorentz gases were Diffusion occurs in the extended system obtained by un-
shown in[6,7] to be diffusive(Sec. I, provided they safisfy folding the torus to a 2D infinite lattice: s¢6,7] and Sec.

the finite horizoncondition: there is an upper bound on the lIl. The diffusion process is then described by a second-order
free path length between collisions. If this is not the case, S%Iif'fusion tensor h%vin four compone witr){res ectto a
that a particle can travel infinitely far without collidinghe 9 poneridg P

billiard has aninfinite horizon, then corridors exist [16], given orthonormal basis, given by

which allow for fast propagating trajectories, leading to 1
superdiffusive behavior, as was recently rigorously Djj :tlmgoz<AXiAXj>t- (2.2
proved[17]. -

We restrict attention to parameter values within the finite The square symmetry of our model reduces the diffusion
horizon regime by choosinlg to block all corridorg10,13.  tensor to a constant multip[® of the identity tensor; we can
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Y YT Y Y YT YA physical requirements givesdiffusion processwherep(x,t)
KJOK/O\/O\JO\JOKJOK/OKJOKJ satisfies the equation
FAAVAAVARVANVARVARVARVARVADY o ol 1
NAA A A A A AAN/ o0, E[Aip_ ’s E(B”p)] “0, (32
FIG. 2. 1D channel obtained by unfolding a torus in the | : :

direction. known asKolmogorov’s forward equatioror the Fokker-

Planck equatiori2]. Thedrift vectorA(x,t) and thediffusion

evaluate thigdiffusion coefficienby restricting attention to (€NSOrB(x,t) give the mean and variance, respectively, of
the dynamics in a one-dimensiordiannelextended only in infinitesimal dlsplaceme_nts at pOSItltm_and timet [2]__ _
the x direction; see Fig. 2. Correspondingly, we restrict at- f the system is sufficiently symmetric that the drift is zero
tention to 1D marginal distributions. and the diffusion tensor is a m_ult|ple of the identity tensor,
A channel geometry, with hard horizontal boundaries, corthen the process Brownian motionand Eq (3.2) reduces to
responding to the triangular Lorentz gas was studied ifhe diffusion equat|on(3.1). A .general diffusion process,
[19,20 [Fig. 3@)]. This is equivalent to a channel with twice Nowever, can binhomogeneous both space and time.
the original height angeriodic boundaries, shown in Fig.
3(b) as part of the whole triangular lattice obtained by un-
folding completely in the vertical direction. We can view this
lattice as consisting of rectangular unit ce[lBig. 3(b)] Diffusion in billiards concerns the statistical behavior of
which are stretched versions of the square unit cell considthe particle positions. We can write the first compongraf
ered above, with the extra conditiaxb. The results in the the positionx; at timet as
remainder of this paper then extend to this case with minor t

B. Diffusion in dynamical systems via limit theorems

t
changes. vl(s)ds+x0:J fo ®3(-)ds+ X, (3.3
0

0

Il. DETERMINISTIC DIFFUSION wheref=uv,, the first velocity component arddenotes com-

In this section, we briefly recall how to make precise thePosition of functions. This expressesg solely in terms of

fact that the behavior of certain deterministic dynamical sysfunctions defined on the torus. In fact, E.3) shows that
tems  “looks like” that of the  diffusion the displacemenkx;:=x—Xo isin some sense a more natural

equation. observable than the positioqin this context.

We thus wish to study the distribution of accumulation
functions of the formS(-) := [}, fo®(-)ds, in particular in the
limit as t— oo [21]. We remark that other observablésire
Diffusion is described classically by the diffusion equa- relevant for different transport proces§&s.

A. Diffusion as a stochastic process

tion We denote byd!': M — M the flow of a dynamical sys-
3 p(t.X) tem with timet€ R. Given a probability measure describ-
p—':DVZp(t,x), (3. ing the distribution of initial conditions, we can find the
dt probability of being in certain regions of the phase spade

wherep is the density of the diffusing substance. Following at given “!“‘?S' SO that we have_;':l stochastic process. If the
Einstein and Wienefsee, e.g.[2]), we can model diffusion Measureu isinvariant so thatu(®™(A))=u(A) for all times
as a stochastic proceBs determined by the probability den- t and all nice seté\, then the stochastic processsisitionary

sity p(x,t) of a particle being at positior at timet given 21]. ) , L ) .
that it started ak=0 at timet=0. The integral in the definition o8 is then a continuous-

rfime version of a Birkhoff sunt" fo®' over the stationary
stochastic process given bf, so that we may be able to
apply limit theorems from the theory of stationary stochastic
CON SN N N N/ processe§21]. For the case of the periodic Lorentz gas with
finite horizon, it was proved if6,7] that the following limit
theorems hold.

8@8@8@8@8@ 1. ,.As;./mptotic linearity of mean-square displacement.
RO, e

(b) \J U U U \/ 2D := lim }<AX2>I (3.4

t*mot

Imposing conditions on the process determined fro

(@)

FIG. 3. Lorentz channel studied ji19,20 with hard upper and . . )
lower boundaries; dotted lines indicate unit cells. Fully unfolded ~ €XiSts, SO that the mean-square displacemeak®),
triangular Lorentz gas. Dotted lines indicate unit cells forming a:={[Ax(1)]?) (the variance of the displacement distribution
channel with periodic upper and lower boundaries. grows asymptotically linearly in time,
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(Ax?),~ 2Dt ast— x, (3.5 integral over Gaussians: see, e[d4,23. (ii)) The conver-

. e . . i gence istight, the definition of which can be found {r24].
where D is the diffusion coefficientln d=2 dimensions,

setting Ax(t) := x(t) —x;(0), we have

(A% ~ 2Dt, 3.6 Property(3) is the strongest sense in which a dynamical
where theD;; are components of a symmetric diffusion system can show deterministic diffusion, making precise
tensor. how a rescaled dynamical system can look like Brownian
motion. However, few physically relevant systems have been
proved to satisfy(3): interest in the periodic Lorentz gas

Scale the displacement distribution iy so that the vari- comes largely from the fact that it is one; another is the triple
ance of the rescaled distribution is bounded. Then this distrilinkage[25].

C. Discussion of definitions of diffusion

2. Central limit theorem: Convergence to normal distribution.

bution convergesveakly or in distribution, to a normally The multidimensional central limit theorem part @)
distributed random variable[21,27, was studied 23], where both Lorentz gases and wind-tree
x(t) - x(0) P mode_ls were found to obey it, tested for certa_in i_at_and
——z ast — oo, (8.7 certain values oh. However, as stated 23], (3) is difficult
vt to investigate numerically, and the results in that paper seem
In the one-dimensional case, this means that to be the best that we can expect.

Property(2), the central limit theorem, has been shown
u . .
“mp(xt ‘FXo - u) _ 1 f e‘sz’z"zds, (3.9 for large classes of observables many dynamical systems
S=—x

(see[21] and references thergirbut again they are often not
physical. Property2) was used irf22] as the definition of a
where P’(-) denotes probability with respect to the distribu- diffusive system, but does not seem to have been applied in
tion of the initial conditions, ana? is the variance of the the physical literature; this is the approach taken in this pa-
limiting normal distribution. Ind=2 dimensions, this is re- per.

placed by similar statements about probabilities of Many papers in the physical literature define a system to
d-dimensional sets. This is theentral limit theoremfor the  be diffusive if only property(1) is verified (numerically,
random variableAx. From(1) we know that in 1D, the vari- e.g.,[12,26,27. Many types of systems are diffusive in this
ance of the limiting normal distribution is?=2D; in d=2  sense, including 1D mag$], random Lorentz gasdf7],
dimensions, the covariance matrixais given by the matrix ~and Ehrenfest wind-tree models, both periodi6] and ran-
(2Dy;) [6,23]. dom[27].

It is possible for the weaker properties to hold when the
stronger ones do not. For example, [i28] a disordered
lattice-gas wind-tree model was reported to have an asymp-

We rescale the patk; by the scale from2), definingX;  totically linear mean-square displacement, but a non-
by [16] Gaussian distribution function, i.€1) but not(2). However,

disorder can lead to trapping effects which cannot occur in
w s€[0,1] (3.9 periodic system$26], and we are not aware of eriodic
/ ' T ' (and hence order¢dilliard-type model with unit-speed ve-

o locity distribution which showg1) but not(2), although in
The distribution of these rescaled paths then converges i8o." /| we show that this can occur with a Maxwellian ve-
distribution to Brownian motion, locity distribution.

Vit a2

t—o

3. Functional central limit theorem: Convergence of path
distribution to Brownian motion.

Xi(s) =

D
X—B ast— oo, (3.10
IV. FINE STRUCTURE OF POSITION AND

where the Brownian motioB has a covariance matrix as in DISPLACEMENT DISTRIBUTIONS

(2). This is known as dunctional central limit theoremor
weak invariance principlg¢21]. We now focus on the diffusive properties of the periodic
A sufficient condition for this is that the following two Lorentz gas model introduced in Sec. Il. In this section, we
properties hold 24]. (i) The multidimensional central limit describe the fine structure of position and displacement dis-
theorem a generalization of2), is satisfied. This says that tributions. The displacement distribution occurs naturally in
the finite-dimensional distributions of the procégsscon-  the central limit theoreniSec. Il B) and in Green-Kubo re-
verge to those of Brownian motion, so that for amyany lations[1,4], whereas the position distribution is more natu-
timess, <---<s,, and any reasonable sdds, ...,D, in RY, ral if we are unable to track the paths of individual particles.
we have It is possible to show that the asymptotic properties of the
- osition and displacement distributions are the same, in the
Pii(s) € Dl’;"'xt(sn) € D) Eense that one phas an asymptotically linear growth if and
- only if the other does, and similarly for the central limit
— P(B(sy) €Dy, B(sy) € D). (3.11 theorem[14]. It is hence equivalent to consider diffusive
The right-hand side can be expressed as a multidimensionptoperties by studying either distribution.
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stable direction of the dynamics: see, eld]. Projecting
corresponds to integrating over the velocities; we expect this
to eliminate this complicated structure and result in some
degree of smoothness of the projected densities. However,
we are not aware of any rigorous results in this direction,
even for relatively well-understood systems such as the Ar-
nold cat magd1].

These 2D distributions are difficult to work with, and we
instead restrict attention to one-dimensional marginal distri-
butions, i.e., projections onto thxeaxis, which will also have
some degree of smoothness. We denote the 1D position den-
sity at timet and positiorkx € R by f(x) and the displacement
density for displacement by g;(x). We let their respective
(cumulative distribution functions bd~(x) and G(x), re-
spectively, so that

Fi(x) == P(x;<x) = fx fi(s)ds, (4.1

and similarly forG;. (When necessary, we will instead de-
note displacements k§) The densities show the structure of
the distributions more clearly, while the distribution func-
tions are more directly related to analytical considerations.

B. Numerical estimation of distribution functions and
densities

We wish to estimate numerically the above denstities and
distribution functions at timet from the N data points
XV, ... xN. The most widely used method in the physics
community for estimating density functions from numerical
data is the histogram; see, e.[R6]. However, histograms
are not always appropriate, due to their nonsmoothness and
dependence on bin width and position of bin ori§@®]. In
[26], for example, the choice of a coarse bin width obscured
the fine structure of the distributions that we describe in

) Sec. VII.
TN S T We have chosen the following alternative method, which
-5 ~10 -5 0 5 10 15 seems to work well in our situation, since it is able to deal

®) o with strongly peaked densities more easily, although we do

FIG. 4. (a) 2D position distribution{b) 2D displacement distri- NOt have any rigorous results to justify it. We have also
bution.r=2.5;b=0.4; t=50; N=5X 10" initial conditions. checked that histograms and kernel density estinategn-
eralization of the histograrfi30]) give similar results, pro-
vided sufficient care is taken with bin widths.

We first calculate the empirical cumulative distribution

Figure 4 shows scatterplots representing 2D position anflinction [30,31, defined byF{™x):=N {i :xﬁ')ix} for the
displacement distributions for a representative choice of gegsosition distribution, and analogously for the displacement
metrical parameters. Each dot represents one initial conditiodistribution. The estimatoF ™ is the optimal one for the
started in the central unit cell and evolved for tine50;  distribution functionF, given the data, in the sense that there
N=5x10* samples are shown. Both distributions show de-are no other unbiased estimators with smaller varigf@H,
cay away from a maximum in the central cell, an overallp. 34). We find that the distribution functions in our models
circular shape, and the occurrence of a periodic fine strucare smooth on a scale larger that that of individual data
ture. points, where statistical noise dominatd$lere we use

These figures are projections to the billiard dom@irof  “smooth” in a visual, nontechnical sense; this corresponds to
the density in the phase spaQe< S'. Since the dynamics on some degree of differentiabilitywe verify that adding more
the torus is mixing 15], the phase-space density convergesdata does not qualitatively change this larger-scale structure:
weakly[29] to a uniform density on phase space correspondwith N=10" samples, we seem to capture the fine structure.
ing to the invariant Liouville measure. Physically, the phase- We now wish to construct the density functiofy
space density develops a complicated layer structure in thedF,/dx. Since the direct numerical derivative & is

A. Position and displacement distributions
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I T T ™) distribution functions gives densities which have an underly-

i J ] ing Gaussian-like shape, modulated byp@nounced fine

0.8k £ —200— structure which persists at all timegFig. 5(b)]. This fine

[ H{(x) =500 — ] structure is just noticeable in Figs. 4 and 5[@6], but oth-

I \ 1 =1000— ] erwise does not seem to have been reported previously, al-
= 060 & . ] though in the context of iterated 1D maps a fine structure
& I ] was found, the origin of which is pruning effects; see, e.g.,

0.4:- — Fig. 3.1 of[32]. We will show that in billiards this fine struc-
i . ture can be understood by considering the geometry of the
- 1 billiard domain.

0.2} .

1 D. Fine structure of position density
@ 0"—% 0 0 20 40 Since Liouville measure on the torus is invariant, if the

x initial distribution is uniform with respect to Liouville mea-
0.1F T T 7 sure, then the distribution at any tinés still uniform. Inte-

i =200 —1 grating over the velocities, the position distribution at titne

Z R :1(5)g8:2 is hence always uniform with respect to Lebesgue measure in

0‘08:' N ] the billiard domainQ, which we normalize such that the

; 1 measure of) is 1. Denote the two-dimensional position den-
__0.06 . sity on the torus atx,y) €[0,1)2 by p'®USx,y). Then
= L i
" oof : PO Y) = o) = ). (42)

. r 4 1 ] X . .
: : Q Q
0.02:- - Here,H(x):={y:(x,y) € Q} is the set of allowed values for
; ] particles with horizontal coordinate[Fig. 5(a), insefl, andlg
ol AT ] is the indicator function of théone- or two-dimensionaket
®) —40 —20 2 20 40 B, given by
FIG. 5. (Color online (a) Time evolution of displacement dis- 1g(b) = 1 ifbeB (4.3
tribution functions.(b) Time evolution of displacement densities, 0 otherwise.

calculated by numerically differentiating a cubic spline approxima- . toru - .
tions to the distribution functions.=2.1; b=0.2. The inset ina) Thus for fixedx, p™{x,y) is independent of within the

shows the definition of the sét(x) required later. available spacei(x).

Now unfold the dynamics onto a one-dimensional channel
in the x direction, as in Fig. 2, and consider the torus as the
Histinguished unit cell at the origin. Fix a vertical line with
horizontal coordinate in this cell, and consider its periodic
translate+n along the channel, wherec Z. Denoting the

useless due to statistical noise, our procedure is to fit a
(interpolating cubic splineto an evenly spread sample of

points fromF{™", and differentiate the cubic spline to obtain

the density function at as many points as requjiet]. Sam-

B channe,
pling evenly from F{™ automatically uses more samples dﬁr:(sgéhere by {x+n,y), we have that for all and for
where the data are more highly concentrated, i.e., where tHe Y
density is larger. E ptchanne(X_F n,y) = plogx,y). (4.4)

We must confirm(visually or in a suitable norinthat our ne?
spline approximation reproduces the fine structure of the dis- o ] o
tribution function sufficiently well, while ignoring the varia- e expect that after a sufficiently long time, the distribu-
tion due to noise on a very small scale. As with any densitylion within cell n will look I|kg the dlstrlbutlon on theT torus,
estimation method, we have thus made an assumption éfodulated by a slowly varying function of In particular,

smoothnes§30]. The analysis of the fine structure in Sec. IV We expect that the 2D position density will become asymp-
justifies this to some extent. totically uniform iny within H(x) at long times. We have not

been able to prove this, but we have checked by constructing
2D kernel density estimatg¢80] that it seems to be correct.
C. Time evolution of 1D distributions A “sufficiently long” time would be one which is much
longer than the time required for the diffusion process to
ross one unit cell.
Thus we have approximately

Figure 5 shows the time evolution of 1D displacement
distribution functions and densities for certain geometricalC
parameters, chosen to emphasize the oscillatory structure.

Other parameters within the finite horizon regime give quali- 1
. L . channe, toru - -

tatively similar behavior. peMelx,y) = X, y)pr(X) = py(X) | Q|]1H(x)(Y), (4.5
The distribution functions are smooth, but have a steplike

structure. Differentiating the spline approximations to thesevherep,(x) is the shapeof the two-dimensional density dis-
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] we use the slope of Idgx?), againstt in that region as an
gzg: estimate of B, giving D=0.1494+0.0002; sefl3,14] for
Yo (x) — the error analysis.

- (Throughout the paper, we denote ky- the Gaussian
density with mean 0 and varianeg, and byN,- the corre-
sponding normal distribution function.

Note that although the density has nonsmooth points,
§ which affects the smoothness assumption in our density es-
i timation procedure described in Sec. IV B, in practice these
points are still handled reasonably well. If necessary, we
could treat these points more carefully, by suitable choices of
partition points in that method.

—10 -5 0 5 10
x E. Fine structure of displacement density
FIG. 6. (Color onling Position densityf, exhibiting a pro- We can treat the displacement density similarly, as fol-

nounced fine structure, together with the demodulated slowly varylows. Let 7(x,y) be the 2D displacement density at time
ing functionp; and a Gaussian with varianc®® The inset shows so that
one period of the demodulating fine-structure functiom=2.3; b

— P X y
=0-51=5%0. f J p(xy)dxdy = P(Ax < x,Ay;<y), xy€R.

tribution as a function okE R; we expect this to be a slowly (4.7)
varying function. We use=<" to denote that this relationship

holds in the long-time limit for values of which do not lie  (Recall thatAx;:=x,—X,). We define the projected versions
in the tails of the distribution. Although this breaks down in 7°"@"'and 7S as follows:

the tails, the density is in any case small there. channe
The 1D marginal density that we measure will then be 7 "X Y) = > n(xy+n), x€Rye[0,1), (4.9

given approximately by nez
Yo _ 7OUxY) = D XM +ny), Xy €[0,1). (4.9
f0=|  p™™Mxydy=pxh0), (4.6 nez

=0 . . . .
Y Again we view the torus as the unit cell at the origin where

all initial conditions are placed. Note that projecting the dis-
placement distribution oli? to the channel or torus gives the
same result as first projecting and then obtaining the dis-
placement distribution in the reduced geometry. Hence the

_ Thus the measured densifyx) is given by the shape oqiqnations as being associated with the channel or torus are
p(x) of the 2D densitymodulatedby fine-scale oscillations appropriate.

dug to the geometry of the lattice _and describedhiy), Unlike p®“in the previous section;®is not indepen-
which we call thefine-structure function dent oft: for example, for small enough all displacements
The above argument motivates ttre)definitionof pi(X)  increase with time. However, we show tha?" rapidly ap-
so thatf(x)=h(x)p(x), now with strict equality and for all proaches a distribution which is stationary in time.
times. We can then view,(x) as the density with respect to  Consider a small ball of initial conditions of positive Le-
a new underlying measureNh where\ is one-dimensional pesgue measure around a pofrtv). Since the system is
Lebesgue measure; this new measure takes into account thfixing on the torus, the position distribution at tirneorre-
available space, and is hence more natural in this problengponding to those initial conditions convergestasw to a
We expect thap, will now describe the large-scale shape of distribution which is uniform with respect to Lebesgue mea-
the density, at least for long times andomparatively small.  sure in the billiard domairQ. The corresponding limiting
Figure 6 shows the original and demodulated densfties displacement distribution is hence obtained by averaging the
andp, for a representative choice of geometrical parametersgisplacement ok from all points on the torus.
The fine structure irf; is very pronounced, but is eliminated  Extending this to an initial distribution which is uniform
nearly completely when demodulated by dividing by the finewith respect to Liouville measure over the whole phase
structureh, leaving a demodulated densily which is close  space, we see that the limiting displacement distribution is
to the Gaussian density with variancBt2(also shown given by averaging displacements of two pointsQnwith
We estimated the diffusion coefficiebt as follows. For  hoth points distributed uniformly with respect to Lebesgue
r=2.3 and b=0.5, using N=10" particles evolved tot  measure onQ. This limiting distribution we denote by
=1000, the best-fit line for ldg\x?); against log in the re- 7S, y), with not subscript.
gion t€[500,1000 gives (Ax?) ~ 12993 which we regard As in the previous section, we expect thedependence of
as confirmation of asymptotic linear growth. Followifig], nfha“”e{x+n, -) to be the same, for large enoughas that of

whereh(x):=|H(x)|/|Q| is the normalized heightLebesgue
measurg of the setH(x) at positionx [see the inset of Fig.
5(a)]. Note thatH(x) is not necessarily a connected set.

016220-7



DAVID P. SANDERS

7YX, ) for x€[0,1). However,7°™'{x, -) is not indepen-

dent ofy, as can be seen from a projected version of Fig.

4(b) on the torug14]. We thus set

7];:hanne{xyy) — torUS(X’y)Tk(x)_ (4.10

To obtain the 1D marginal densigy(x), we integrate with
respect toy,

1
g(x) = f 7P y)dy = () 7(X),  (4.1D)
y=0

1
P(x) := f
y=0

Again we now redefing; so thatg,(x) = ¢(x)7(x), with the
fine structure ofg,(x) being described byp and the large-

where

7%, y)dy. (4.12

scale variation byg(x), which can be regarded as the density

with respect to the new measuge\ taking account of the
excluded volume. In the next section, we evaluatg) ex-

plicitly.

F. Calculation of x-displacement density¢(x) on torus

Let (X;,Y;) and (X,,Y,) be independent random vari-

ables, distributed uniformly with respect to Lebesgue mea-

sure in the  bhiliard domain Q, and let AX
={X,—-X;}€[0,1) be theirx displacement, wher¢-} de-
notes the fractional part of its argument. TheX is the sum
of two independent random variables, so that its density
given by the following convolution, which correctly takes
account of the periodicity ofi and ¢ with period 1:

1
¢(§):f h(x)h(x + &)dx. (4.13
0

This form leads us to expand in Fourier series,

h(x) = > Ak = h(0) + 23 h(k)cog2mkx),

keZ keN
(4.19

and similarly for ¢, where the Fourier coefficients are de-
fined by

R 1
0
(4.195

The last equality follows from the evennesshpfand shows
that h(k)=h(-k), from which the second equality in Eq.
(4.14) follows. Fourier transforming Eq4.13 then gives

1
h(x)e 27kxdx = f h(x) cog2kx)dx.
0

B(K) = h(k)h(- k) = h(Kk)2. (4.1

Taking the origin in the center of the disk of radingsee
the inset of Fig. B the available space functidnis given by

PHYSICAL REVIEW E71, 016220(2005

FIG. 7. (Color onling Partial sumsg,, up to m terms of the
Fourier series fokb, with r=2.3 andb=0.5.

—_— 1 2
{1—2\"b2—x2—2\/a2—(§—x> }

(4.17)

for x€[0,1/2), and is even and periodic with period 1. Here
we adopt the convention thaw=0 if @< 0 to avoid writing
indicator functions explicitly. The evaluation of the Fourier
coefficients ofh thus involves integrals of the form

Ja

0

whereJ, is the first-order Bessel function; this equality fol-

lows from Eq.(9.1.20 of [33] after a change of variables.
Hence the Fourier coefficients of are h(O):féh(x):l

and, for integek # 0,

1

- W[(' D*ad,(2malk)) +bdy(2mblK) .

1

h(x) =
®=1q

cos(zt)v/az—tzdt=727—j~]1(za) (z#0), (4.18

h(k) =
(4.19

Note that [ (1)¢(x)dx:<}5(0)=h(0)2=1, so that¢ is correctly
normalized as a density function on the torus.

In Fig. 7, we plot partial sumsb,, up to m terms of the
Fourier series forp analogous to Eq4.14). We can deter-
mine the degree of smoothnessdfand hence presumably
of g, as follows. The asymptotic expansionXfz) for large
realz [Eqg. (9.2.0) of [33]],

Ji(2) ~ \/zz co{% - z) =0z, (4.20

shows thah(k)=0(k™32) and hencep(k)=0(k3). From the
theory of Fourier serie¢see, e.g.[34], Chap. 1, we hence
have thate is at leastC? (once continuously differentiable
Thus the convolution oh with itself is smoother thath is,
as intuitively expected, despite the nondifferentiable points
of h.

We have checked numerically the approach of
I 7°™x,y) dy to ¢(x), and it appears to be fast, although the
rate is difficult to evaluate, since a large number of initial
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=100 —7

0.2f 2 ' 8r(x) —] L4t ]
[ Ty (x) —— 1 : r =500 —]
[ i ] 12 7= 1000 —7
[ ] i ) — 1
0.15¢ 1 Yon(x) ]
N [ — 3085‘ ]
0.1_— g 0.6:' E
04F ]

0.05F g
L 02F 1

ol 93 5] 03 0 03 I 15

FIG. 10. (Color onling Displacement densities as in Figlbp
after rescaling byt, compared to a Gaussian density with mean 0
and variance R. r=2.1;b=0.2.

FIG. 8. (Color online Displacement densitg,, with demodu-
lated 7 compared to a Gaussian of variand®.2The inset in(a)
shows the fine-structure functiog for these geometrical param-

eters.r=2.1;b=0.2;t=50. . . L
with small exits[11-13,39. Having 7, constant across each

cell indicates that the distribution of particles within the bil-
liard domain in each cell is uniform, as is needed for the
Machta-Zwanzig approximation to work.
As r increases away froma? the exit size of the traps
G. Structure of displacement distribution increases, and the Machta-Zwanzig argument ceases to give
In Fig. 8, we plot the numerically obtained displacement® 900d approximatiof12,13. The distribution then ceases
densityg,(x), the fine-structure functiog calculated above, to be uniform in each cell; see Flg.. 6. This may be related to
and their ratioz(x), for a certain choice of geometrical pa- (e crossover to a Boltzmann regime describefiLi.
rameters. Again the ratio is approximately Gaussian, which
confirms that the densities can be regarded as a Gaussian V. CENTRAL LIMIT THEOREM AND RATE OF
shape modulated by the fine structute CONVERGENCE
However, ifr is close to 2, then, itself develops a type

of fine structure: it is nearly constant over each unit cell. This e now discuss the central limit theorem &s:e in
is shown in Fig. 9 for two different times. We plot botp terms of the fine structure described in the previous section.

conditions is required for the numerically calculated distri-
bution function to approach closely the limiting distribution.

and 7, rescaled by\s’E and compared to a Gaussian of vari-

ance D. (This scaling is discussed in Sec) V. A. Central limit theorem: Weak convergence to normal
This steplike structure a#, is related to the validity of the distribution

Machta-Zwanzig random-walk approximatiowhich gives The central limit theorem requires us to consider the den-

an estimate of the diffusion coefficient in regimes where the n

. . sities rescaled byt, so we define
geometrical structure can be regarded as a series of traps

~ In r
0:(x) = Vt gi(xn't), (5.1
Fr=200(x) — where the first factor of’t normalizes the integral @j; to 1,
Ni=200(x) — giving a probability density. Figure 10 shows the densities of
§f:1°°°§x; ] Fig. 5(@) rescaled in this way, compared to a Gaussian den-
n‘zl%"g(i)_: sity with mean 0 and varianceD2 We see that the rescaled

densities oscillate within an envelope which remains ap-
proximately constant, but with an increasing frequency as
—oo; they are oscillating around the limiting Gaussian, but
do not converge to it pointwise. See also Fig. 9.

] The increasingly rapid oscillations do, however, cancel
. out when we consider the rescaled distribution functions,
] given by the integral of the rescaled density functions,

Ti(s) ds=G,(x\1). (5.2)

X

Y06 =04 =02 0 02 0.4 0.6 - x
Gt(x) =

S=—
FIG. 9. (Color onling Displacement density; and demodulated ] ) o
7, both rescaled byt, att=200 andt=1000, compared to a Gauss- Figure 11 shows the difference between the rescaled distri-

ian of variance B. The inset again shows the fine-structure func- bution functions and the limiting normal distribution with
tion ¢. r=2.01;b=0.1. mean 0 and variancel2 We see that the rescaled distribu-
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: 1 X
0.01 N,2(x) := —— f e 520y (5.4
i oN2m) -

0.005} Figure 12 shows a log-log plot of this distance against
= i time, calculated numerically from the full distribution func-
2‘ ok tions. We see that the convergence follows a power law,
CH ~
i) [ IG; = Noplloe ~ 174, 5.5

000! = Nap (5.5

: with a fit to the data for=2.05 giving a slopex=0.482.

ool The same decay rate is obtained for a range of other geo-

i metrical parameters, although the quality of the data deterio-
-1.5 -0. . . rates for larger, reflecting the fact that diffusion is faster, so
that the distribution spreads further in the same time. Since

FIG. 11. (Color onling Difference between rescaled distribution W€ Use the same numbii= 107 of initial conditions, there is
functions and limiting normal distribution with varianceD2r @ lower resolution neax=0 where, as shown in the next
=2.1:0=0.2. section, the maximum is obtained.

In [36] it was proved rigorously that= ;13 =0.167 forany

tion functions do converge to the limiting normal, in fact HOlder continuous observable Here we have considered
uniformly, ast— oo; we thus havaveakconvergence. only the particular Holder observabig but for this function

Although this is the strongest kind of convergence we car{e S€€ that the rate.of convergence is much faster than the
obtain for the densitieg, with respect to Lebesgue measure, [0Wer bound proved ih36].
Fig. 9 provides evidence for the following conjecture: the

rescaled densities, with respect to the new, modulated mea- C. Analytical estimate of the rate of convergence
sure convergeiniformly to a Gaussiamlensity This charac-
terizes the asymptotic behavior more precisely than the stan-
dard central limit theorem.

We now obtain a simple analytical estimate of the rate of
convergence using the fine-structure calculations in Sec. IV.

Since the displacement distribution is symmetnc we have
Gt(x 0)=2 5 for all t. The maximum deviation cn‘St from N,p
B. Rate of convergence oceurs near tox= 0, where the density function is furthest
from a Gaussian, while the fine structure of the dengjty
means thaét is increasing theréFig. 11). Due to the oscil-
latory nature of the fine structure, this maximum thus occurs
at a distance of of the period of oscillation fronx=0.

Since the displacement density has the fogyix)
=p(X)7(x), after rescaling we have

Since theE;t converge uniformly to the limiting normal

distribution, we can consider the distanléi—NZDIIx, where
we define theuniform normby

IF1L. = SUF(9). (5.3

G0 = VD7), (5.6)

Whereﬁ(x) :=t7,(x\1) is the rescaled slowly varying part of
0. and the fine structure at tinteis given by

We denote byN 2 the normal distribution function with vari-
ancea?, given by

“Lsp P s =1423 dkcos2mkad). (5.7
[ F=22b=04—%] keN
:i ok r=25b=04-a1 The maximum deviation occurs étof the period ofg(x\t),
= [ ] i.e., atx=1/4t, so that
xé‘ E NG R =
= 0 ) IG,— NI, = > p(k)cog2mkxt)dx (5.9
@ . ] 0  kEN
3L ] (k=112
I ] 1 (= 1)
=7 2 (5.9
, . L , , Viken, kodd
2 2.5 3 3.5 4 . .
log,o7 The correction due to the curvature of the underlying Gauss-

ian converges to 0 as— e, since this Gaussian is flat at
FIG. 12. (Color onling Distance of rescaled distribution func- =0. HencelG,—NI.,=O(t™/?).
tions G, from limiting normal distributionN,p, in log-log plot. The This calculation shows that the fastest possible conver-
straight line is a fit to the long-time decay of the dataifer2.05. gence is a power law with exponeaF%, and provides an
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intuitive reason why this is the case. If the rescaled shape *
= . =] R (6.5)
function 7; converges to a Gaussian shape at a rate slower =0
thant 2, then the overall rate of convergeneecould be
slower than3. However, the numerical results in Sec. V B w
show that the rate is close é) We remark that for an ob- :4th vpy(v)dv = 4Dtw, (6.6)
0

servable which is not so intimately related to the geometrical
structure of _the lattice, the fine structure will in general bewhereﬁ is the mean speed, after interchanging the integrals
more complicated, and the above argument may no Ionge(gverr andu.
hold. We thus see that for any speed distribution having a finite
mean, the variance of the position distribution, and hence the
mean-square displacement, grows asymptotically linearly
with the same diffusion coefficient as for the uniform speed
In this section, we consider the effect of a nonconstantlistribution, having normalized such that 1. We have veri-
distribution of particle speed45]. A Maxwellian (Gaussiap ~ fied this numerically with a Gaussian velocity distribution:
velocity distribution was used in polygonal and Lorentzthe mean-square displacement is indistinguishable from the
channels in[37] and[20], respectively, in connection with unit speed case even after very short times.
heat conduction studies. The mean-square displacement was
observed to grow asymptotically linearly, but the relationship _ S
with the unit speed situation was not discussed. A more com- B. Gaussian velocity distribution
plicated Lorentz gas with a Gaussian distribution was studied Henceforth attention is restricted to the case of a Gaussian
in [38]. velocity distribution. For each initial condition, we generate
We show that the mean-square displacement grows aswo independent normally distributed random variabbgs
ymptotically linearly in time with the same diffusion coeffi- andv, with mean 0 and variance 1 using the standard Box-
cient as for the unit speed case, but that the limiting positiorMuller algorithm[18], and then multiply byo, which is a
distribution may benon-GaussianFor brevity, we refer only  standard deviation calculated below. We us@ndv, as the
to the position distribution throughout this section; the dis-components of the velocity vectet whose probability den-
placement distribution is similar. sity is hence given by

VI. MAXWELLIAN VELOCITY DISTRIBUTION

g vil20? gvdl20?  gro¥20?

27 o2 2w’

(6.7)

A. Mean-square displacement p(v) = p(vy,vy) =

Consider a particle located initially @kg,vq) where v . _
has unit speed. Changing the speed of the particle does n#fherev:=|v|=\v1+v; is the speed of the particle. The speed
change the path it follows, but only the distance along the thus has density
path traveled in a given time. Denoting lﬁ]‘v(xo,vo) the v e s
billiard flow with speedv starting fromxy and with initial py(v) = ;e‘” 20 (6.8
velocity in the direction of the unit vector,, we have
t g and mearv=o\7/2. To compare with the unit speed distri-

(X0, Vo) = (X0, Vo), 6. bution, we requir@ =1, and hencer=\2/x. As before, we

where the flow on the right-hand side is the original unit-distribute the initial positions uniformly with respect to Le-
speed flow. If all speeds are equal #9 then the radially besgue measure in the billiard doman
symmetric 2D position probability density after a long tiine

IS
C. Shape of limiting distribution

o) = 5o~
POy = Dot A

giving a radial density

(6.2 The position density6.4) is a function of time. However,
the Gaussian assumption used to derive that equation is valid
in the limit whent — 0, so the central limit theorem rescaling

r -r? T 1) = i P4t 6.9
exp( . 6.3 24r) =t P4t (6.9
2Duvt "\ 4Dut eliminates the time dependence in E6.4), giving the fol-
(Throughout this calculation, we neglect any fine struciure. '©Wing shape for the limiting radial density:

prlv) =

If we now have a distribution of velocities with density _ ar [ 12 m -
pv(v), then the radial position density at distancis fradr) = —J exp(— — - —) dv=:—1,
4D J - 4Dv 4 4D
f124r) =J p(r|v) py(v)do. (6.4 (6.10
v=0

denoting the integral by. MATHEMATICA [39] can evaluate
The variance of the position distribution is then given by this integral explicitly in terms of th#leijer G function[40]
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35 . —————]
F frd(r) —1
3F ¢™4(r) 1 —1
F pFd(r) —1

2.5F

%5 1T 15 2
r

FIG. 13. (Color onling The radial density functioFi‘t""‘JI com-
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t=100——o3
£ =1000 —1
asymptotic —]
exact — ]
gaussian ]

FIG. 14. (Color online@ Comparison of the demodulated radial

density 5@ with the exact MeijelG representation, the large-

pared to the numerically calculated radial fine-structure functionasymptotic approximation, and the radial Gaussian with variance
¢™9 rescaled to converge to 1 and then vertically shifted for clarity.op_

The demodulated radial densip?® is also shownr=2.3; b=0.5;

t=100.

ar

_>. (6.11

1
2,O,O

See[41] and references therein for a review of the use of "

such special functions in anomalous diffusion.

We can, however, obtain an asymptotic approximation to
from its definition as an integral, without using any proper-

ties of special functions, as follows. Defin&(v)

D. Comparison with numerical results
Figure 13 shows the numerical radial position density

T {ad(r) for a particular choice of geometrical parameters. We

wish to demodulate this as in Sec. IV to extract the slowly
varying shape function, which we can then compare to the
alytical calculation.

The radial fine-structure functiop®{r) must be calcu-
lated numerically, since no analytical expression is available.
We do this by distributing 10points uniformly on a circle of
radiusr and calculating the proportion of points not falling
inside any scatterer. This we normalize so af(r) — 1 as

= (r?/4Dv) +(mv?/4), the negative of the argument of the | .. ysing the fact that whenis large, the density inside
exponer;nal in E%(36-10)- ThenK has a unique minimum at the circle of radiusr converges to the ratidr?-m(a?
vmin:=[r/(2mD)]** and we expect the integral to be domi- +1?)]/r2 of available area per unit cell to total area per unit

nated by the neighborhood of this minimum. However, th
use of standard asymptotic methods is complicated by the
fact that ag — 0, v, tends to 0, a boundary of the integra-

tion domain.

To overcome this, we change variables to fix the mini-

mum away from the domain boundaries, settmg v /v nin.
Then

(6.12

| = Uminf e_aL(W)dW,
w=0

where a:= mv2, /2 andL(w):= (1/w)+(w?/2), with a mini-
mum atw,,,=1. Laplace’s methodsee, e.g9.[42]) can now
be applied, giving the asymptotic approximation

2m 2
I~ Umin g (Winin) ,L = _/_e—3a/2' (6.13
Va I—”(Wmin) V3
valid for largea, i.e., for larger.
Hence
~ r—oo
fradr) ~ cre s’ (6.14)
where
aT 3 T 1/3
C ==, = . 61
2DV3 p 2(32[)2) (619

[S)

cell. We can then demodulahfé{ad by ¢4 setting

) = HHaUN .
¢Ar \b)
Figure 14 shows the demodulated radial derigi#§{r) at
two times compared to the exact soluti10 and(6.11),
the asymptotic approximatiof6.14) and (6.15, and the ra-
dial Gaussiar(r/2D)e*/?°. The asymptotic approximation
agrees well with the exact solution except at the peak, while
the numerically determined demodulated densities agree
with the exact long-time solution over the whole range .of
All three differ significantly from the Gaussian, even in the
tails. We conclude that the radial position distributiomds-
GaussianA similar calculation could be done for the radial
displacement distribution, but a numerical integration would
be required to evaluate the relevant fine-structure function.
An explanation of the non-Gaussian shape comes by con-
sidering slow particles which remain close to the origin for a
long time, and fast particles which can travel farther than
those with unit speed. The combined effect skews the result-
ing distribution in a way which depends on the relative
weights of slow and fast particles.

(6.16

E. 1D marginal

The 1D marginal in the direction is shown in Fig. 15.
Again there is a significant deviation of the demodulated
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- Gr=100(x) —1 5
L = 4 1
1F Tli=100(x) —
- Nr=1000x) — ] Q
o5 Pon (1) — 1
8F ot ] h
; asymptotic : S 5
ook ] @ 4
0.4F .
0.2F ] (b)
[ s N ] FIG. 16. (a) The geometry of the polygonal billiard unit cell,
i e | ) shown to scale withp,=/(2e). (b) Part of the polygonal channel

x with the same parameters.
FIG. 15. (Color online Rescaled 1D marginal of the displace-

ment densityG, and the demodulated versiap compared to the dynamics of such systems are required: see, p4g], and

Gaussian with variance2and to the asymptotic expression. The references therein for a recent example.

latter is not shown close t&=0, where it drops to Or=2.3; b As far as we are aware, there are few rigorous results on

=0.5. ergodic and statistical properties of these modeis,44.
However, certain polygonal channels have been found nu-

density from a Gaussian. From E@.14), the 2D density at merically to shownormal diffusion in the sense that our

(x,y) is asymptotically property(1) is satisfied, i.e., the mean-squared displacement
grows asymptotically linearly: see, e.f26,37. No convinc-
f(x y) ~ — exp{ B(x +y2)2’3] (6.17) ing evidence has so far been given, however, that property

(2), the central limit theorem, can be satisfied, although it

- was shown in23] that (3) is satisfied for some random po-
from which the 1D marginaf(x) is obtained by lygonal billiard models. Here we show that polygonal bil-
- liards can satisfy the central limit theorem.
" f—_w flxy) dy. (6.18 A. Polygonal billiard channel model
It does not seem to be possible to perform this integration We study a polygonal billiard introduced [@26]. The ge-
explicitly for either the asymptotic expressi¢6.17) or the ~ Ometry is shown in Fig. 1@ and the channel in Fig. 16).
corresponding exact solution in terms of the Meijgfunc- ~ We fix the angles¢; and ¢, and choosed such that the
tion. Instead we perform another asymptotic approxmanorW'dth of the bottom triangles is half that of the top triangle.
starting from the asymptotic expressi@f.17. Changing This determines the ratio df; to h, in terms of the angles

variables in Eq(6.18 to z:=y/x and using the evennessyn ~ ¢1 and ¢,. We then require the inward-pointing vertices
gives of each triangle to lie on the same horizontal line in order

to prevent infinite horizon trajectories, giving+h,=h=1
and d=h/(tan¢>l+%tan¢2), with h;=dtan¢, and h,

7 2/3
f( X) ~ e ex;{ K(1+7%) ]dz (6.19 =(d/2)tan¢,. We remark that irf26] it was stated that the
area|Q|=dh of the billiard domain is independent af,
where «:= B|x|*". Laplace’s method then gives when ¢, is fixed, but this is not correct, since the expression
c\3 for d shows that it depends afy,, and we have fixeth=1.
F(x) ~ \—|x|1’3e"3‘x‘4/3, (6.20 In [26] the parameterg), = 7(y5-1)/8 and¢,=m/q were
V8w used, withgeN and 3=q=<9. Forq=5 normal diffusion

was found, whereas fay=3,4 it was found thatAx?),~t®

with a# 1, so that propertya) is no longer satisfied and we

daveanomaloudliffusion. As far as we are aware, there is as
yet no physical or geometrical explanation for this observed

anomalous behavior, although presumably number-theoretic

properties of the angles are relevant.

We use the same;, but a value of¢, which is irratio-

In this section, we apply the previous ideas tpodygonal ~ nally related tom, namely ¢,=/(2€) = m/5.44 (wheree is
billiard channel. Polygonal models differ from Lorentz gasesthe base of natural logarithmssince there is evidence that
in that they are not chaotic in the standard sense, since thwixing properties are stronger for such irrational polygons
Kolmogorov-Sinai entropy and all Lyapunov exponents ard44]. In this case we findAx2),~t*%% which we regard as
zero due to the weak nature of the scattering from the poasymptotically linear, so that propertg) is again satisfied,
lygonal sideqg43]. Other indicators of the complexity of the with D=0.3796+0.0009.

valid for largex. This is also shown in Fig. 15. Due to the
[x|1/2 factor, the behavior near=0 is wrong, but in the tails
there is reasonably good agreement with the numerical r
sults.

VIlI. POLYGONAL BILLIARD CHANNEL
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FIG. 17. (Color onling Position density at=50 in the polygo- FIG. 18. (Color online@ Rescaled displacement densities com-

nal model with¢p,=7/(2e). The inset showh(x) over two periods.  pared to the Gaussian with variand®.ZThe inset shows the func-
tion ¢ for this geometry.
B. Fine structure
The shape of the displacement density was considered in

[26] using histograms, but the results were not conclusivet.he densities near=0 for small times, indicating some kind

Here we use our more refined methods to study the fin f trapping effect; this appears to relax in the long time limit.

structure of position and displacement distributions and to gain we conjecture thal_we have uniform convergence of
show their asymptotic normality. the (_jemodulated densitie;_; to a Gaussian density. -
Figure 17 shows a representative position denfity). Figure 20 shows the distance of the rescaled distribution
Following the method of Sec. IV D, we calculate the fine-functions from the limiting normal distribution, analogously
structure functiorh(x) as the normalized height of available t©© Fig. 12, for several values ap, for which the mean-
space at positior; this is shown in the inset. We demodulate Square displacement is asymptotically linear. The straight
f, by dividing by h to yield 5, which is again close to the lne fitted to the graph foth,=m/(2e) has slope-0.212, so
Gaussian with variance:t. that the rate of convergence for this polygonal model is sub-
With the same notation as in Sec. IV F, we can also calStantially slower than that for the Lorentz gas, presumably
culate the fine-structure functiop of the displacement den- due to the slower rate of mixing in this system. A similar rate

sity. Taking the origin in the center of the unit cell in Fig. Of decay is found for¢,==/7, while $,=7/6 and &,
16(a), we have =m/9 appear to have a slower decay rate. Nonetheless, the

distance does appear to converge to 0 for all these values of
_ 2 1 ¢», providing evidence that the distributions are asymptoti-
h(x) = @(Xtam&ﬁ x- §d| tan¢>2> 7.0 cally normal, i.e., that the central limit theorem is satisfied.

) ) ) ) We remark that these convergence rate considerations will

for 0=x=d, with h being an even function and having pe- pe affected if we have not reached the asymptotic regime,
riod 2d. [The factor of 2l in Eq. (7.1) makesh a density per  \hich would lead to an incorrect determination of the rel-

unit length] The Fourier coefficients alﬁ(O):l and evant limiting growth exponent and/or diffusion coefficient.
Lo 1 {wkx) 1 &
h(ky=— | h(x)cod — |=——=—5l(k 7.2
() ZdJ_d() d |Q|772k2() ( ) T ,,I....:
0.5F t=100—]
for k# 0, where forme 7 we have _ 1= 1000 —
C 1 = 10000 — ]
Mtar(¢,)  if kis odd 04¢ 1op(x) —7
[(k) =1 8tar(¢»,) if kK=4m+2 (7.3 03k E
0 if k=4m. 2 ]
e ]
0.2 §
C. Central limit theorem 0.1:_ ]
As for the Lorentz gas, we rescale the densities and dis- .
tribution functions byt to study the convergence to a pos- 05 e i 5 3
sible limiting distribution. Again we find oscillation on a x

finer and finer scale and weak convergence to a normal dis- ;5 19 (Color onliné Demodulated densities; for t=100, t
tribution: see Fig. 18. Figure 19 shows the time evolution of_ 300 andt=10 000 compared to a Gaussian Vt\lith varianée 2
the demodulated densitieg. There is an unexpected peak in The inset shows a detailed view of the peak neaf.
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—L4— T - - ] of convergence in terms of the fine structure of the distribu-
[ ] tion functions. The demodulated densities appear to converge
16k ] uniformly to Gaussian densities, which is a strengthening of

the usual central limit theorem.

We showed that imposing a Maxwellian velocity distribu-
tion does not change the growth of the mean-square displace-
ment, but alters the shape of the limiting position distribution
to a non-Gaussian one.

] Finally, we showed that similar methods can be applied to

. a polygonal billiard channel where few rigorous results are

] available, showing that the central limit theorem can be sat-

o4l Corh b isfied by such models, but finding a slower rate of conver-

L Cr™ ]

L gence than for the Lorentz gas.

2 25 3 3.5 4 We believe that our analysis may have implications for
logjor the escape rate formalism for calculating transport coeffi-

FIG. 20. (Color online Distance of the rescaled distribution cients(see, e.g.[4]), where the diffusion equation with ab-
functions from the limiting normal distribution for the polygonal sorbing boundary conditions is used as a phenomenological
model with different values of,. The straight line is a fit to the model of the escape process from a finite length piece of a

logyo | Gi(x) — Nop ()|

long-time decay of the irrational cas=m/(2€). Lorentz gas: analyzing the fine structure in this situation
could provide information about the validity of this use of
VIII. CONCLUSIONS the diffusion equation. We also intend to investigate models

exhibiting anomalous diffusion using the methods presented

We have studied deterministic diffusion in diffusive bil- in this paper.
liards in terms of the central limit theorem. In a 2D periodic
Lorentz gas model, where the central limit theorem is ACKNOWLEDGMENTS
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